How to Use Keras-Based Multi-GPU
A. Code modifications and job submission methods for using Multi-GPU
1. Add the [from keras.utils import multi_gpu_model] module
import keras
from keras.datasets import cifar10
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.utils import multi_gpu_model
import os2. Declare the use of multi-GPU in the code
# initiate RMSprop optimizer
opt = keras.optimizers.rmsprop(lr=0.0001, decay=1e-6)
# multi-gpu
model = multi_gpu_model(model, gpus=2)
# Let's train the model using RMSprop
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])3. Job submission script
Last updated