How to Install Conda-based Horovod

Horovod uses a common standard MPI model for message passing and communication management in high-performance distributed computing environments. Horovod's MPI implementation offers a simplified programming model compared to the standard TensorFlow distributed training model. In the NEURON system, if you want to train models using multiple nodes based on a Conda environment, you can install and run it using the following method.

※ For details on using Horovod, refer to [Appendix 8].

A. Installing TensorFlow-Horovod

1. Create a conda environment

$ module load gcc/10.2.0 cuda/11.4 cudampi/openmpi-4.1.1 python/3.7.1 cmake/3.16.9
$ conda create -n my_tensorflow
$ source activate my_tensorflow
(my_tensorflow)  $

※ For detailed instructions on using Conda, refer to [Appendix 5]

2. Installing TensorFlow and horovod

(my_tensorflow) $ conda install tensorflow-gpu=2.0.0 tensorboard=2.0.0 tensorflow-estimator=2.0.0 python=3.7 cudnn cudatoolkit=10 nccl=2.8.3
(my_tensorflow) $ HOROVOD_WITH_MPI=1 HOROVOD_GPU_OPERATIONS=NCCL HOROVOD_NCCL_LINK=SHARED HOROVOD_WITH_TENSORFLOW=1 \
pip install --no-cache-dir horovod==0.23.0

3. Verifying Horovod installation

4. Example of Horovod Execution

1) Example of interactive execution

2) Example of batch script execution

B. Installing PyTorch-horovod

1. Creating a Conda Environment

2. Installing PyTorch and horovod

3. Verifying Horovod Installation

4. Example of Horovod Execution

1) Example of interactive execution

2) Example of batch script execution

circle-info

Last updated on November 11, 2024.

Last updated